

**SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR
(AUTONOMOUS)**
Siddharth Nagar, Narayananavam Road – 517583

QUESTION BANK

Subject with Code: DISTRIBUTED OPERATING SYSTEMS (25CS5802)

Course & Branch: M.TECH CSE

Year & Sem: I-M.TECH & I-Sem

Regulation: R25

UNIT – I
Architectures & Synchronization in Distributed Systems

1	Define Distributed Systems and explain various distributed architectures.	[L1] [CO1]	[10M]
2	Discuss communication primitives and their role in distributed systems.	[L2] [CO1]	[10M]
3	Explain Lamport's logical clocks with a neat example.	[L2] [CO1]	[10M]
4	Illustrate the concept of vector clocks and causal ordering.	[L3] [CO1]	[10M]
5	Analyze the inherent limitations of distributed systems.	[L4] [CO2]	[10M]
6	Compare system architecture types: client-server, peer-to-peer, and hybrid.	[L4] [CO2]	[10M]
7	a) Define Mutual Exclusion in distributed systems. b) Compare token-based and non-token-based mutual exclusion algorithms.	[L1] [CO2]	[5M]
8	a) Explain global state and cuts in distributed computation. b) Describe termination detection algorithms.	[L2] [CO3]	[5M]
9	Discuss issues in designing distributed operating systems.	[L4] [CO1]	[10M]
10	Design a logical clock synchronization mechanism for a distributed environment.	[L6] [CO4]	[10M]

UNIT – II
Deadlocks, Agreement Protocols & Resource Management

1	Define distributed deadlocks and explain their challenges.	[L1] [CO1]	[10M]
2	Discuss centralized, distributed, and hierarchical deadlock detection algorithms.	[L2] [CO2]	[10M]
3	Explain agreement protocols and the Byzantine generals' problem.	[L2] [CO2]	[10M]
4	Illustrate the architecture of a distributed file system.	[L3] [CO3]	[10M]
5	Analyze issues in deadlock detection and resolution.	[L4] [CO3]	[10M]
6	Compare different distributed deadlock control organizations.	[L4] [CO3]	[10M]
7	a) Define log-structured file systems. b) Explain their advantages.	[L1] [CO3]	[5M]
8	a) Describe agreement problem classifications. b) Explain an application of agreement algorithms.	[L2] [CO2]	[5M]
9	Evaluate solutions to the Byzantine agreement problem.	[L3] [CO2]	[5M]
10	Design an efficient distributed deadlock detection model.	[L5] [CO4]	[10M]

UNIT – III
DISTRIBUTED SHARED MEMORY, SCHEDULING & FAULT TOLERANCE

1	Define Distributed Shared Memory and explain its architecture.	[L1] [CO1]	[10M]
2	Discuss memory coherence models in DSM.	[L2] [CO2]	[10M]
3	Explain load distributing algorithms in distributed scheduling.	[L2] [CO3]	[10M]
4	Illustrate task migration and its associated issues.	[L3] [CO3]	[10M]
5	Analyze failure recovery and fault tolerance mechanisms.	[L4] [CO4]	[10M]
6	Compare synchronous and asynchronous checkpointing.	[L4] [CO4]	[10M]
7	a) Describe components of load-distributing algorithms. b) Explain stability issues.	[L2] [CO3]	[5M]
8	a) Define backward error recovery. b) Explain consistent checkpoint sets.	[L1] [CO4]	[5M]
9	Evaluate performance of different DSM implementations.	[L5] [CO5]	[10M]
10	Design a load sharing strategy for a cloud-based distributed system.	[L6] [CO6]	[10M]

UNIT – IV
PROTECTION, SECURITY & CRYPTOGRAPHY IN DISTRIBUTED SYSTEMS

1	Define protection and explain the access matrix model.	[L1] [CO1]	[10M]
2	Discuss authentication methods in distributed systems.	[L2] [CO2]	[10M]
3	Explain public key cryptography with an example.	[L2] [CO3]	[10M]
4	Illustrate safety issues in the access matrix model.	[L3] [CO3]	[10M]
5	Analyze differences between conventional and modern cryptography.	[L4] [CO4]	[10M]
6	Compare DES and public-key techniques.	[L4] [CO4]	[10M]
7	a) Define multiple encryption. b) Explain its security benefits.	[L1] [CO3] [L2] [CO3]	[5M] [5M]
8	a) Define multiple encryption. b) Explain its security benefits.	[L1] [CO3] [L2] [CO3]	[5M] [5M]
9	Evaluate advanced protection models in distributed systems.	[L5] [CO5]	[10M]
10	Design a secure distributed authentication framework.	[L6] [CO6]	[10M]

UNIT – V
MULTIPROCESSOR OS & DISTRIBUTED DATABASE CONCURRENCY CONTROL

1	Explain multiprocessor system architectures.	[L1]	[CO1]	[10M]
2	Discuss interconnection networks for multiprocessor systems.	[L2]	[CO2]	[10M]
3	Describe operating system issues in multiprocessor systems.	[L2]	[CO2]	[10M]
4	Illustrate hypercube architecture.	[L3]	[CO3]	[10M]
5	Analyze distributed database systems.	[L4]	[CO4]	[10M]
6	Compare lock-based and timestamp-based concurrency control.	[L4]	[CO4]	[10M]
7	a) Define serializability theory.	[L1]	[CO4]	[5M]
	b) Explain its significance.	[L2]	[CO4]	[5M]
8	a) Describe optimistic concurrency control.	[L2]	[CO4]	[5M]
	b) Explain its limitations.	[L3]	[CO4]	[5M]
9	Evaluate replication strategies in distributed databases.	[L5]	[CO5]	[10M]
10	Design a concurrency control model for a financial distributed system.	[L6]	[CO6]	[10M]

Prepared By:

Dr. P.M.S.S.CHANDU M.E, Ph.D., PDF.
PROFESSOR
Dept. of CSE/ SIETK.